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A model is developed for the adjustment of the spatially averaged time-mean flow of
a deep turbulent boundary layer over small roughness elements to a canopy of larger
three-dimensional roughness elements. Scaling arguments identify three stages of the
adjustment. First, the drag and the finite volumes of the canopy elements decelerate air
parcels; the associated pressure gradient decelerates the flow within an impact region
upwind of the canopy. Secondly, within an adjustment region of length of order Lc

downwind of the leading edge of the canopy, the flow within the canopy decelerates
substantially until it comes into a local balance between downward transport of
momentum by turbulent stresses and removal of momentum by the drag of the
canopy elements. The adjustment length, Lc, is proportional to (i) the reciprocal of
the roughness density (defined to be the frontal area of canopy elements per unit floor
area) and (ii) the drag coefficient of individual canopy elements. Further downstream,
within a roughness-change region, the canopy is shown to affect the flow above as
if it were a change in roughness length, leading to the development of an internal
boundary layer. A quantitative model for the adjustment of the flow is developed by
calculating analytically small perturbations to a logarithmic turbulent velocity profile
induced by the drag due to a sparse canopy with L/Lc � 1, where L is the length of
the canopy. These linearized solutions are then evaluated numerically with a nonlinear
correction to account for the drag varying with the velocity. A further correction is
derived to account for the finite volume of the canopy elements. The calculations are
shown to agree with experimental measurements in a fine-scale vegetation canopy,
when the drag is more important than the finite volume effects, and a canopy of
coarse-scale cuboids, when the finite volume effects are of comparable importance to
the drag in the impact region. An expression is derived showing how the effective
roughness length of the canopy, z

eff
0 , is related to the drag in the canopy. The value

of z
eff
0 varies smoothly with fetch through the adjustment region from the roughness

length of the upstream surface to the equilibrium roughness length of the canopy.
Hence, the analysis shows how to resolve the unphysical flow singularities obtained
with previous models of flow over sudden changes in surface roughness.

1. Introduction
The surfaces of the Earth and oceans are covered with roughness elements, such as

grass or bushes over land, or ripples and waves on the ocean. When the roughness

† Present address: Data Connection Ltd, Enfield, UK.
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elements are small, it is conventional to consider only the flow over the roughness
elements. However, when the roughness elements are larger, such as crops or buildings,
it is often necessary to know details of the flow between the roughness elements as
well as the flow over the group of roughness elements. It is then appropriate to think
of the group of roughness elements as a canopy. Despite progress in the past few
years in the use of the roughness length to parameterize effects of varying surface
roughness, better modelling is needed, particularly for the non-uniform region in
the vicinity of the roughness change, in order to tackle practical problems such as
mesoscale numerical weather prediction and air quality forecasting in urban areas and
hilly terrain, which then determine climatic and agricultural effects of air movements
and fluxes in and out of these canopies.

The overall effects of a canopy of roughness elements on the turbulent flow
that passes over them are usually parameterized as a roughness length, z

eff
0 . Such a

parameterization is compact and effective in many applications, but has limitations.
First, this method gives no information about the flow between the roughness elements
themselves, which is required for modelling scalar transport in applications of urban
air quality and dispersion in agricultural crops. Secondly, there is at present no
general systematic method for obtaining the roughness length from the geometry
of the roughness elements and their spatial distribution. Indeed, Grimmond & Oke
(1999) have shown that the methods in current use cannot even explain satisfactorarily
the flow over symmetrically distributed roughness elements of the same size, let alone
those over typical non-uniform non-symmetrically distributed obstacles found in
practice. Thirdly, the roughness length is only defined when the wind profile above
the roughness elements is logarithmic. Hence, when the flow above the area of
roughness elements is accelerating or decelerating it is not even clear whether or
not the roughness length can be defined (Krettenauer & Schumann 1992). Finally,
representing a change in the density or type of surface roughness elements by a
change in their roughness lengths, z0, leads to unrealistically large changes in shear
stress at the upwind edge of a change (e.g. Belcher, Xu & Hunt 1990). The object of
this paper is to develop understanding and quantitative modelling of these complex
boundary-layer flows, and to suggest how to improve the use of the roughness length
as a practical parameterization.

These problems are addressed here with a more refined treatment of the effects of the
roughness elements on the flow. The calculations are based on the approximations,
first, that the volume occupied by the canopy acts as a region of drag on the
wind (see for example Kaimal & Finnigan 1995, chapter 3) and, secondly, that
the finite volumes of the roughness elements of the canopy displace the flow. As
noted by Finnigan (2000), previous work has focused on the conditions when the
boundary layer is fully adjusted to the canopy, such as over large areas of vegetation.
Here, since we are motivated particularly by winds over and within urban areas
whose building densities are often inhomogeneous, we focus specifically on the
adjustment of the boundary-layer flow as it approaches and passes over the canopy
elements.

There are several fluid dynamical questions that need to be answered. First, how
does the boundary-layer flow above the canopy adjust to the flow within it? In
particular, is the flow just above the canopy equivalent to that over a change in
roughness with a logarithmic boundary-layer profile displaced upwards a distance
d (as suggested by the measurements of Rotach, 1993, over the city of Zurich).
Secondly, what are the effects of the various dynamical processes in these complex
boundary-layer flows? The processes include blocking of boundary-layer eddies by
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Figure 1. Geometry of the canopy elements and the approach flow.

the shear layer that forms at the top of the canopy (Hunt & Durbin 1999), and
interaction between the boundary layer and canopy flows through eddies generated
by a mixing-layer instability at the top of the canopy (Raupach, Finnigan & Brunet
1996). A third question, therefore, is whether a simple mixing length parameterization
may be valid over part of the flow, as found in studies of flow over roughness changes
(Belcher et al. 1990) and studies of the mean wind profile within a vegetation canopy
(Wilson, Finnigan & Raupach 1998). Fourthly, as in flow over roughness changes
(Townsend 1976) and two-phase flows (Kowe et al. 1988), the effects of the obstacles
on the flow are modelled in an averaged sense over an area or volume occupied
by many obstacles and by introducing an extra shear stress or body force into the
momentum equations, rather than calculating the flow around each obstacle. Can
these factors be defined in terms of simple properties of the roughness elements and
the surface? These questions are addressed in this paper.

In § 2, a model for boundary-layer flow through groups of obstacles is formulated
by representing the obstacles as a canopy with a drag on the wind. In § 2.1, a simple
method is developed to estimate the mean drag exerted by the canopy on the mean flow
in terms of properties of the canopy elements, with an analysis of the characteristic
scales of flow and the flow perturbations in a homogeneous canopy. Depending on
the density of the canopy, two different models for turbulent momentum transport
within the canopy are developed in § 2.2. The characteristics and scalings for how
the boundary layer adjusts to the canopy are described in § 3. The method of solving
the resulting equations is described in § 4. Comparisons of the model with previous
computations and with measurements made both in the field and in the wind tunnel
are shown in § 5. Section 6 describes the variation of the effective roughness length of
the canopy with distance through the canopy. Conclusions are given in § 7.

2. Development of idealized models
A fully developed atmospheric boundary layer, with wind components U0 =

(U0(z), 0, 0), blows in the positive x-direction, with the z-axis pointing upwards
vertically, see figure 1. Here, we consider the changes to this boundary layer as it
impinges upon a canopy, composed of a group of many solid roughness elements. To
fix ideas, think of a canopy that extends over a length L and formed by Ne elements,
with typical height he, breadth be, and gap between canopy elements ge.

The canopy elements have two effects on the mean flow. First, the body force
associated with the pressure drop across individual elements exerts a drag that
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decelerates the mean flow. Secondly, the displacement of streamlines around individual
canopy elements can also transports momentum. The aim here is to calculate the main
effect of the canopy of obstacles by computing the spatially averaged time-mean flow,
called here the mean flow. In this way, we compute the evolution of the flow as the
canopy density varies, but avoid calculating the details of the flow around individual
canopy elements. The spatial average is taken over a horizontal area with side of
length LA. For a periodic array of obstacles, LA is the length of the repeating unit. For
a random array, LA encompasses several obstacles, such that LA is much greater than
the gap between individual obstacles but much less than the length scale over which
the mean obstacle density changes. This approach was initiated by Taylor (1944),
see Batchelor (1967, § 5.15), and has been further developed for flows in vegetation
canopies, see Finnigan (2000).

Consider, for simplicity, the case when the fraction of the canopy volume occupied
by obstacles, β , is small, i.e. the gap between the elements ge is large compared
with their breadth be, β ∼ b2

e/g
2
e � 1. The aerodynamic drag of the obstacles, which

remains substantial, can then be represented by a point force at the centre of
each roughness element. The spatial averaging operation renders these point forces
into a continuous resistive body force that extends throughout the canopy volume.
In addition, the displacement of streamlines by individual canopy elements yields,
on averaging spatially, a net momentum transport, the dispersive stress described
by Raupach & Shaw (1982) and Finnigan (1985). There is experimental evidence
(Finnigan 1985; Cheng & Castro 2002a) that near the top of the canopy the dispersive
stress is very small compared to the Reynolds stress. The dispersive stress may be a
larger fraction near the bottom of the canopy (Bohm, Finnigan & Raupach 2000),
but both stresses tend to be small there. Hence, as we shall see, the drag term is
important through the whole volume of the canopy, whereas the dispersive stress can
be neglected; although we shall see that the finite volumes of the canopy elements
lead to a dispersive stress that is important upwind of the canopy.

We begin by analysing the effect of the drag term on the flow. Hence, on ignoring
the dispersive stress, the equations governing the spatially averaged time-mean flow
are

Uj

∂Ui

∂xj

+
∂P

∂xi

=
∂τij

∂xj

− fi, (2.1)

∂Ui

∂xi

= 0. (2.2)

Hereinafter, xi = (x, y, z) and τ13 = τ , and the pressure, stress and drag force
are defined such that the density is one throughout. The model is completed on
parameterizing the spatially averaged turbulent stress, τij , and drag per unit volume,
fi . These aspects are considered next.

2.1. Relating the obstacle drag to the flow

First, the drag per unit volume, fi , is related to the spatially averaged time-mean
flow, U (x, y, z), referred to here as the mean flow. Consider the drag on a test canopy
element, defined in analogy with the test charge in electrodynamics. The drag on the
test element is associated with a momentum deficit in the wake of the element that
spreads throughout the fluid in the canopy volume and thus slows the mean flow.
Similarly, the mean flow impinging upon the test element is reduced by the presence
of the other canopy elements and is measured by the spatially averaged time-mean
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flow speed, U (x, y, z). Since the Reynolds number of the flow around the test element
is large, the drag varies as the square of the impinging wind speed (Batchelor 1967,
§ 5.11). The drag on the test element then scales as U 2 and is reduced by the presence
of the other canopy elements (cf. Wood & Mason 1993). These arguments suggest
that the drag on each canopy element scales on U 2 multiplied by a factor that is
independent of U . The spatial averaging smoothes these point forces to yield fi , the
drag per unit volume of canopy. Hence, on dimensional grounds, fi can be expressed
as the ratio of U 2 and a canopy-drag length scale, Lc, namely

fi(x) =
|U |Ui

Lc

, (2.3)

with Lc independent of U . The drag fi = 0 outside the canopy.
Explicit estimates for Lc are now obtained for illustration by considering an array

of Ne tall slender canopy elements, each with breadth be and frontal area Af ∼ hebe,
and covering a total floor area At . At height z, the sectional drag coefficient, cd(z), is
defined, following MacDonald (2000), to be the drag at height z divided by half the
square of the spatially averaged time-mean wind at that height, U 2(z)/2, multiplied
by the frontal width (per unit floor area) presented to the flow by the obstacles, i.e.
Nebe/At . The force per unit volume acting at height z is then (Nebe/At )cd(z)U

2(z)/2.
When the obstacles have a uniform horizontal cross-section, the height and breadth
can be related to the frontal area through be = Af /he. MacDonald (2000) shows how
this expression is related to a conventional (depth integrated) expression for the drag
and drag coefficient.

Now, this drag of the canopy decelerates the fluid within the canopy and hence acts
only within the fraction of volume occupied by fluid, (1 − β). Hence, the drag is divided
by a factor of (1 − β). As β increases, this process becomes more important and is
considered by Eames, Hunt & Belcher (2003). Taken together, for this illustrative
case, there is an average force per unit volume acting on the fluid within the canopy
of U 2Nec̄dAf /2(1 − β)heAt (where c̄d is the average sectional drag coefficient), so that
the average canopy-drag length scale Lc is given by

1

Lc

=
Ne

1
2
c̄dAf

(1 − β)heAt

=
1
2
c̄dλ

(1 − β)he

∼ be/g
2
e , (2.4)

where λ = NeAf /At ∼ hebe/g
2
e is the roughness density (see also Wooding, Bradley &

Marshall 1973; Raupach 1992). We note that the coefficient NeAf /heAt is equivalent
to the leaf area index, a, with units of m−1, referred to in the literature on forests and
plant canopies (e.g. Kaimal & Finnigan 1995, p. 79).

The model just developed is sufficiently flexible to account for inhomogeneous
canopies. When the characteristics of the canopy elements vary in space, as they
do through an urban area, the canopy length scale, Lc, also varies. Formally, this
variation must be on length scales greater than the averaging length scale LA.

2.2. Models for the turbulent stress

Hunt et al. (2001) show that the dynamics of turbulence are approximately local,
so that the turbulent stress is approximated by Prandtl’s mixing-length model, when
(i) the distortion time scale Td at which the mean shear and strain change along
the trajectories of fluid elements is comparable with or larger than the Lagrangian
timescale of the energy containing eddies and (ii) the integral length scale Lx of
the eddies is no larger than the length scales over which the mean shear changes,
i.e. Lx � |dU/dz|/|d2U/dz2|. A shear layer develops at the top of a homogeneous
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Figure 2. Geometry of the canopy and two models for the mixing-length.

canopy and generates mixing-layer-type eddies (Raupach et al. 1986), which satisfy
these conditions only marginally. Hence, for homogeneous canopies, the mixing-length
model has limitations (Raupach et al. 1996). Nevertheless, for the perturbed canopy
flows considered here, the mixing-length model can be justified as the first term in
an expansion (Finnigan & Belcher 2003). Hence, we adopt the mixing-length model
here.

In the boundary-layer analysis developed here, the vertical gradient of the shear
stress, ∂τ/∂z, is the dominant Reynolds stress gradient in the mean momentum
budget, which, with the mixing-length model, has the general form

∂τ

∂z
=

∂

∂z

{
l2m

(
∂U

∂z

)2
}

. (2.5)

Even in the limit of β � 1, it is helpful to consider how the turbulence structure
changes as the canopy increases in density. If the canopy is extremely sparse, then the
structure of the turbulence in the approaching boundary layer is not much changed
by the canopy. The length scale of the eddies that determine the dissipation rate is
then unchanged, i.e.

lm ≈ κz, (2.6)

where κ = 0.4 is the von Kármán constant (see figure 2). This approximation has
been used in selected regions of other perturbed turbulent boundary layers such as
flow over changing surface roughness (Belcher et al. 1990) and flow over elevation
changes (Belcher, Newley & Hunt 1993). We denote as very sparse canopies those
canopies where the surface shear stress is not significantly affected by the canopy, i.e.
f � dτ/dz so that

λ ∼ β
he

be

� u2
∗

U 2
h

∼
{

κ

ln(he/z0)

}2

∼ 0.1 − 0.01. (2.7)

The mixing length can then be approximated by (2.6).
When beu

2
∗/heU

2
h � β � 1, the canopy is still sparse enough that the mean flow

perturbation is small, but dense enough that the turbulence is affected by the drag of
the canopy, both indirectly by the drag changing the mean flow and directly by the
drag acting on the eddies themselves (Finnigan 2000). In this regime, the distribution
of mean shear in a canopy that is homogeneous in the streamwise direction is
determined by downward transport of momentum by turbulent stresses balancing
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Figure 3. Characteristics of the adjustment to the canopy. (i) Impact region; (ii) adjustment
region (iii) canopy interior; (iv) canopy shear layer; (v) roughness-change region; (vi) exit
region; (vii) far wake.

removal of momentum by canopy drag (region (iii) in figure 3). Then from (2.1), (2.3)
and (2.5) the mean momentum equation reduces to

0 =
d

dz

{
l2m

(
dU

dz

)2
}

− U 2(z)

Lc(z)
. (2.8)

The horizontal wind speed within the canopy, U (z), decays with depth from the top
of the canopy, where it is Uh, to a very low value within a layer of depth ls , which
can be estimated from (2.8). The turbulent stress gradient is then of the order

d

dz

{
l2m

(
dU

dz

)2
}

∼ 1

ls

{
l2m

(
Uh

ls

)2
}

, (2.9)

and the canopy drag scales as U 2/Lc ∼ U 2
h/Lc, so equations (2.8) and (2.9) yield

ls ∼
(
l2mLc

)1/3
so that ls/he ∼ (lm/he)

2/3(Lc/he)
1/3. (2.10)

Hence, ls is controlled partly by the mixing length lm, which determines the efficiency
of the turbulence to mix momentum down into the canopy, and partly by the
canopy-drag length scale Lc, which determines the efficiency of the canopy to remove
momentum.

Now, increasing the canopy element density increases the canopy drag, and so tends
to decrease Lc. In addition, the wake turbulence generated by the additional canopy
elements leads to an enhanced rate of turbulence dissipation (Ayotte, Finnigan &
Raupach 1999), which tends to reduce the mixing length lm. From (2.10), these two
tendences both tend to reduce ls and increase the mean shear which has two effects
on the turbulence:

First, vorticity within this shear layer fluctuates in response to vorticity associated
with large boundary-layer eddies above the canopy. This shear sheltering (Hunt &
Durbin 1999) tends to block the large boundary-layer eddies, which explains why,
in measurements above urban areas (e.g. Rotach 1993), the eddy scales for vertical
transport, and hence also the mixing length, increase linearly from the blocking shear
layer, i.e.

lm = κ(z − d) when z > d. (2.11)

Here, d is the displacement height. This analysis explains why the displacement
height lies within the shear layer at the top of the canopy, as observed by Thom
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(1971) and proposed by Jackson (1981). The measurements of Rotach (1993) and
Raupach, Thom & Edwards (1980) suggest that this mechanism operates even when
the canopy consists of obstacles with finite aspect ratios (he ∼ be), so that there are
large recirculations in the wakes of the canopy elements. Canopies dense enough that
the turbulence structure is changed from the form (2.6) for very sparse canopies, to
either of the forms (2.12) or (2.13) we refer to as dense canopies.

Secondly, the shear layer at the top of the canopy is itself dynamically unstable
(as observed by Louka, Belcher & Harrison 2000) and produces turbulent eddies
characteristic of free shear layers, whose length scales are about equal to the
thickness of the shear layer (Raupach et al. 1996; Finnigan 2000). Finnigan &
Brunet (1995) show that the shear-layer motions are only weakly coupled to the
large-scale boundary-layer eddies above the canopy, in agreement with the idea of
shear sheltering. The movement of these inhomogeneous and non-Gaussian eddies
down into the canopy mean that these shear layer motions provide much of the
energy of the turbulence through the depth of the canopy (Finnigan 2000). Thus,
within the canopy, the mixing length, lm, scales on the size of these shear-layer eddies
and is approximately constant, say lm = lc, with height.

If the canopy consists of roughness elements of approximately uniform dimensions
or if the canopy consists of roughness elements whose breadths, be, are much smaller
than the thickness of the shear layer, i.e. be � ls , then the mixing length, lm, is constant
with height and proportional to the thickness of the shear layer, i.e.

lm = lc ∝ ls when z < d . (2.12)

Canopies consisting of roughness elements of highly irregular shapes induce large
vortical wakes that interact with the downstream elements (e.g. Britter & Hunt 1979).
The mean spatially averaged shear layer then ceases to control the dynamics of the
turbulence. Instead, the mixing length is controlled by the vortices shed in the obstacle
wakes, which are of order he:

lc ∝ he. (2.13)

This value is very much greater than the value in the turbulent boundary layer above
the canopy, where lm = κ(z − d). The wind shear is then much smaller within the
canopy, so that the wind profile is more uniform with height.

At the bottom of the canopy, very close to the ground, the eddies are blocked by
the ground, so that, as in turbulence near any plane surface,

lm = κz. (2.14)

For a dense deep canopy, where he � ls , Inoue (1963) has shown that the solution
to (2.9) is

U = Uh exp ((z − he)/ls), (2.15)

with ls = (2l2cLc)
1/3, which confirms the scaling (2.10) for this particular case.

For a finite-depth canopy, where he � ls , the exponential solution is approximately
valid in the upper portion of the canopy. However, near the ground, where κz < lc,
the wind speed is small, i.e. U 2/Lc � dτ/dz, so that the mean wind profile is close to
a classical logarithmic form. The wind speed near the ground can then be estimated
to be

U (0) ≈ Uh exp (−he/ ls). (2.16)

This leads to the useful distinction between of shallow canopies where ls/he =
(lc/he)

2/3(Lc/he)
1/3 ∼ 1 and deep canopies which have ls/he � 1. For irregular canopies,
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with larger lc ∼ he, the average wind profile is more uniform with height, whence
(2.16) shows how the surface winds are higher. Urban canopies tend to be shallow,
whereas vegetation canopies tend to be deep.

Given these arguments, two models are used here to parameterize the mixing length
in the analysis of adjustment to a canopy, see figure 2. First, for very sparse canopies
we use the standard mixing-length model, which increases linearly from the ground
according to (2.6). Secondly, for dense canopies we use the displaced mixing-length
model, which is constant within the canopy and then increases linearly with height
above the shear layer at the top of the canopy, namely

lm = lc when z < zc,

lm = κ(z − d) when z > zc. (2.17)

The region close to the ground in the dense canopies is neglected in the present study.

3. Characteristics of adjustment of the boundary layer to a canopy
Before developing a quantitative model for the adjustment of the boundary layer

to a canopy, scaling arguments are developed to show the characteristics of the
adjustment and to interpret the quantitative results obtained in § 4 below for the
linearized model. The adjustment is found to proceed through distinct regions, which
are shown schematically in figure 3. The controlling dynamics of these regions and
their magnitudes are estimated from the momentum equations.

The drag of the canopy elements acts as an impulse decelerating air parcels, which
increases the mean pressure within the canopy. Hence, there is a pressure gradient
that decelerates the flow within an impact region that extends upwind of the canopy,
denoted (i) in figure 3. By continuity, the deceleration of the streamwise flow leads to
a vertical motion over and out of the canopy. This mean vertical motion transports
fluid upwards, and may be greater than vertical transport of momentum by turbulence
in regions (i) and (ii).

From the leading edge of the canopy, within an adjustment region, denoted (ii)
in figure 3, the wind within the canopy is decelerated by the canopy drag. The
deceleration is largely inviscid and so the canopy drag is largely balanced by
streamwise advection. The streamwise lengthscale of the adjustment region can
therefore be estimated by balancing the nonlinear drag with the nonlinear streamwise
advection, namely

U
∂U

∂x
∼ U 2

Lc

. (3.1)

The kinetic energy in the mean streamwise velocity, U 2/2, is therefore reduced
approximately exponentially on a lengthscale Lc/2 (cf. Finnigan & Brunet 1995).
Thus, the canopy lengthscale, Lc, represents the streamwise distance required for the
canopy to rob an air parcel of its kinetic energy, and hence gives an estimate for the
distance for the winds within the canopy to adjust. Deceleration of the streamwise
velocity leads, by continuity, to a vertical flux out of the top of the canopy within this
adjustment region. Meanwhile, turbulent stresses transport momentum downwards
into the canopy.

Further downwind, the local balance given in equation (2.8) is achieved, with the
loss of momentum by canopy drag balancing the downward transport of momentum
by turbulent stresses. The flow within the canopy has then adjusted. This is the canopy
interior flow, denoted by (iii) in figure 3. Here, the velocity profile is given by (2.15)
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and (2.16). As described in § 2.2, there is a layer of shear of thickness ls between the
canopy flow and the boundary-layer flow above, denoted (iv) in figure 3. The spatially
averaged flow above the canopy requires separate consideration with the effect of the
canopy being represented by an effective roughness length, z

eff
0 . An internal boundary

layer develops in region (v) above the canopy, z > he. Its depth, li(x), is determined,
following Townsend (1965), by balancing streamwise advection and vertical transport
by the turbulent stress to yield

li ln
(
li
/
z

eff
0

)
≈ 2κ2(x − x0). (3.2)

Notice how the canopy affects li through the effective roughness length, z
eff
0 , and

through the effective origin, x0. At the effective origin for this internal boundary layer,
x0, there is a smooth transition from vertical transport driven by the mean velocity
out of the canopy, w(z = he) ∼ Uh(he/Lc) exp(−x/Lc), to that driven by the vertical
transport by turbulence. Hence, we identify x = x0 where w(z = he) ∼ u∗. It follows
that

x0 ∼ Lc ln

{(
Uh

u∗

)(
he

Lc

)}
. (3.3)

Thus, there is a smooth transition a distance of order x0 downstream of the canopy
edge. If the canopy is exceptionally long, the boundary layer above may fully adjust
to the effective roughness of the canopy.

Just above the canopy elements, within the roughness sublayer, there are also time-
averaged motions associated with the flow around individual roughness elements.
Point measurements (rather than spatially averaged measurements) yield the internal
boundary-layer structure only when li has grown higher than the roughness sublayer,
which typically has depth 2–3he (e.g. Rotach 1993; Louka et al. 2000). Cheng &
Castro (2002b) have shown how this occurs considerably downstream of the leading
edge of the canopy. Nevertheless, these complications of the roughness sublayer are
avoided when the spatially averaged flow is considered, as it is here.

In the vicinity of the downstream edge of the array is the exit region, denoted (vi)
in figure 3. Here, the resistance of the canopy suddenly disappears. There is therefore
a force imbalance on the mean flow below he and the mean wind accelerates, leading,
by continuity, to a downwards mean vertical velocity. Turbulent stresses transport
further momentum downwards to fill the velocity deficit in the wake over a streamwise
length scale of order heUh/u∗.

Yet further downstream is the far wake region, denoted (vii) in figure 3, where the
dynamics is dominated by streamwise advection and downward momentum transport
by turbulent stresses. The flow develops in a similar way to the wake behind a
single bluff obstacle on a surface. Hence, the wake-velocity deficit, �u, is expected to
develop as �u ∝ heUh/x, and the height of the wake, hw(x), increases approximately
as hw ∝ (xhe)

1/2 (Counihan, Hunt & Jackson 1974). Sufficiently far downstream, the
boundary layer returns to its far upstream profile.

4. A linear model for adjustment to a canopy
We now develop an analysis of the linear changes to the spatially averaged flow

as a turbulent boundary layer passes through a distributed force, which shows how
the regions analysed in § 3 match each other and confirms the order of magnitude
estimates. The description given here is approximate. (Jerram 1995, chapter 3, gives
full details of a formal matched asymptotic analysis. A copy of this analysis is
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available from the JFM office.) The force distribution is localized around the origin
of coordinates and varies over a characteristic horizontal length scale L and maximum
height he (see figure 2). The incident wind profile is logarithmic with roughness length
z0 and friction velocity u∗. In the following analysis, we calculate changes to the
boundary layer induced by a weak canopy, L/Lc � 1, so that changes to the boundary
layer are small and therefore can be calculated from the linearized momentum
equations. Subsequently, these linear solutions are iterated numerically to obtain
changes for denser canopies.

4.1. Governing equations

Each physical quantity, for example the spatially averaged velocity components, Ui ,
pressure, P , and stress tensor, τij , is written as the sum of the incident profile, which
would exist in the absence of any canopy and which is denoted by subscript 0,
and a perturbation part induced by the canopy, which is denoted by lower case
letters. The streamwise velocity component, for example, is then written U = U0 + u.
The equations are then linearized for small perturbations by neglecting products of
perturbation quantities. On retaining only the dominant Reynolds stress term, namely
the shear stress, the equations governing these linearized perturbations become

U0

∂u

∂x
+

dU0

dz
w +

∂p

∂x
=

∂τ

∂z
− f,

U0

∂w

∂x
+

∂p

∂z
= 0,

∂u

∂x
+

∂w

∂z
= 0. (4.1)

On elimination of the pressure, these equations combine to yield

U0

(
∂2w

∂z2
+

∂2w

∂x2

)
− U ′′

0 w =
∂f

∂z
− ∂2τ

∂z2
. (4.2)

The boundary conditions are first that the perturbations decay far from the canopy
and secondly no-slip at the surface. This is justified even within the canopy because
the spatially averaged wind, namely U0 +u, is defined to be the wind averaged within
the fluid volume only, where the no-slip condition is satisfied.

The mixing-length model is also linearized to yield a relationship between the
perturbation stress and the perturbation velocity gradient:

τ = 2u∗lm∂u/∂z. (4.3)

As explained in § 2.2, the mixing length is parameterized either as the standard mixing
length (2.6) or the displaced mixing length (2.17).

The range of validity of the linearized equation (4.2) is established by estimating the
magnitude of the linear perturbations compared to the magnitude of the upstream
flow. The characteristic velocity scale in the incident flow is Uh, defined at the height
of the canopy, so that

Uh = U0(h) = (u∗/κ) ln(h/z0). (4.4)

The forcing for the perturbations is the drag force, and hence the magnitude of the
maximum streamwise velocity perturbation induced over the whole length of the
canopy can be estimated by balancing the acceleration term over the length of
the canopy, U0∂u/∂x ∼ Uhu/L, with the drag term, f ∼ U 2

h/Lc, which yields the
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following linear estimate for the velocity perturbation

u ∼ UhL/Lc. (4.5)

Hence, for a weak canopy, with L/Lc � 1, the perturbation velocities are small, u � Uh,
and the linearized equation (4.2) is appropriate.

Secondly, as is usual in these perturbed boundary-layer problems (e.g. Townsend
1976, p. 307; Belcher & Hunt 1998), the stress gradient term is smaller than the
acceleration term over significant regions of the flow. This can be shown by examining
the ratio of these two terms over vertical and horizontal length scales L. In the
particular case when the mixing-length model is used:

∂τ/∂z

U0∂u/∂x
=

(∂/∂z) (2u∗lm∂u/∂z)

U0∂u/∂x
∼ u∗/lm

Uh/L
� 1. (4.6)

Asymptotic methods can then be used to obtain solutions to (4.2) in the limit that
u∗/Uh is small. Now the definition of Uh shows that the analysis requires

u∗

Uh

=
1

(1/κ) ln(h/z0)
� 1, (4.7)

which is usually satisfied because the upwind roughness length is much smaller than
the height of the canopy.

It is convenient to treat the resulting mathematical problem in Fourier space,
defined, for example, for the streamwise velocity perturbation, ũ(k, z), by

u(x, z) =
1

2π

∫ ∞

−∞
ũ(k, z)eikx dk. (4.8)

Application of this Fourier transform to the equation governing the vertical velocity,
(4.2), yields

U0

(
d2w̃

dz2
− k2w̃

)
− U ′′

0 w̃ =
df̃

dz
− k2τ̃ − d2τ̃

dz2
. (4.9)

With the mixing-length model for the turbulent shear stress, (4.9) becomes a fourth-
order ordinary differential equation. There are four boundary conditions: u, w are
zero at the surface and u, w decay to zero far above the canopy. Solutions to this
equation correspond to the vertical velocity induced by a force that varies sinusoidally
in the x-direction about a zero mean. In the linear model, the force variation in the
vertical and horizontal directions have to be specified. Solutions for flow through a
canopy that varies arbitrarily in the streamwise direction are obtained by numerical
inversion of the Fourier transforms.

4.2. The inviscid approximation to the impact and adjustment regions

As shown above, the shear stress is much smaller than the inertial terms over much
of the flow. A first approximation to the flow is then calculated by solving (4.9),
neglecting the two terms involving the shear stress. A further approximation is to
neglect the curvature in the incident wind profile, U ′′

0 /k2U0, which is small away from
the surface in a logarithmic incident profile. Solutions based on these approximations
are described in § 4.2.1 and § 4.2.2.

These inviscid solutions provide useful quantitative estimates in region (i) where
the flow impacts onto the canopy and demonstrates how the mean velocity field
(even without the shear stress) adjusts smoothly from upwind to its form within and
above the canopy. In addition, as will be shown in § 4.2.3, in the impact region, a
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generalization of the inviscid theory can provide insights into the effects of the finite
volumes of the canopy elements.

4.2.1. General solution in the inviscid approximation

Equation (4.9) is approximated as described above, when it reduces to (the Fourier
transform of) Poisson’s equation. The resulting equation can be solved using Green’s
function methods to give

w̃ = Ce−kz + Dekz +

∫ z

z0

f̃ (k, z′)
cosh (z − z′)

U0(z′)
dz′, (4.10)

where C and D are coefficients determined by boundary conditions (the notation is
chosen to be consistent with Jerram 1995, chapter 3). The solutions for the streamwise
velocity and pressure perturbations are then found from continuity and the streamwise
momentum equation, respectively, to yield

ũ = −iCe−kz + iDekz − f̃

ikU0(z)
+

∫ z

z0

f̃ (k, z′)
sinh (z − z′)

U0(z′)
dz′ (4.11)

p̃ = iU0(z)

{
Ce−kz − Dekz −

∫ z

z0

f̃ (k, z′)
sinh (z − z′)

U0(z′)
dz′

}
. (4.12)

The coefficient D is determined by the condition that the perturbations decay far
from the canopy, which implies that

D +
1

2

∫ ∞

z0

f̃ (k, z′)
e−kz′

U0(z′)
dz′ = 0. (4.13)

The second coefficient, C, is determined with the boundary condition that the vertical
velocity is zero at the surface, z = z0, which yields

C + D = 0. (4.14)

Higher-order corrections to this leading-order solution that account for small, but
finite, curvature in the upwind velocity profile have been derived (Jerram 1995, § 3.5.7).

4.2.2. Inviscid solution for a rectangular canopy

For a constant drag in a rectangular region, lying between x = − L/2 and L/2,
namely

f =
U 2

h

Lc

{H(x + L/2) − H(x − L/2)} {1 − H(z − he)} , (4.15)

where H is the Heaviside step function, the solutions can be evaluated explicitly in
physical space to yield

u(x, z) =
UhL/Lc

4π

[
h1

(
x̂ − 1

2
, ẑ − ĥe

)
− h1

(
x̂ + 1

2
, ẑ − ĥe

)
− h1

(
x̂ − 1

2
, ẑ + ĥe

)
+ h1

(
x̂ + 1

2
, ẑ + ĥe

)
− 4π(1 − H(z − he))

]
, (4.16)

w(x, z) = − UhL/Lc

4π

[
h2

(
x̂ − 1

2
, ẑ − ĥe

)
− h2

(
x̂ + 1

2
, ẑ − ĥe

)
− h2

(
x̂ − 1

2
, ẑ + ĥe

)
+ h2

(
x̂ + 1

2
, ẑ + ĥe

)]
. (4.17)
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Figure 4. Inviscid perturbations, u/Uh, to a uniform incident flow, Uh, at a succession of
downstream locations through a canopy with constant drag force, f = 0.45U 2

h/L and h/L = 0.5
(so that L/Lc ≈ 0.5). Note the non-zero perturbation at the surface and the discontinuity in u
at the top of the canopy. At the end of the canopy and in the wake u/Uh = −0.83.

Here, x̂ = x/L, ẑ = z/L, ĥe = he/L and

h1(ξ, ζ ) = ζ ln
(
ξ 2 + ζ 2

)
− 2ξ tan−1 (ξ/ζ ) , (4.18)

h2(ξ, ζ ) = −ξ ln
(
ξ 2 + ζ 2

)
− 2ζ tan−1 (ξ/ζ ) , (4.19)

where the inverse tangents are defined to lie within −π/2 and π/2, so that care is
needed in evaluating the solutions across the branch cuts around the boundary of the
canopy.

We have argued that over significant regions of the flow, the solution is dominated
by inviscid irrotational processes. Hence, figure 4 shows profiles of the streamwise
velocity as a uniform flow, Uh, impinges upon a rectangular canopy with a constant
resistive force, f = 0.45U 2

h/L, calculated using the inviscid solution (4.16). The solution
shows clearly how the wind speed decelerates in the impact region, and within the
canopy, with an increasing velocity deficit through the canopy. Above the canopy,
the wind speed is decelerated and then beyond halfway, it is accelerated: the canopy
acts as a source above the canopy. In the inviscid approximation, the drag-induced
velocity deficit remains constant in the wake downwind of the canopy and does not
decay.

The solution (4.16) and the profiles in figure 4 show that upwind of the canopy,
within the impact region, the flow decelerates over a length of order L. Just at the
upwind edge of the canopy at the surface the inviscid solution (4.16) gives

u(−L/2, z0) = Uh

[
− 1

2π

he

Lc

ln

(
h2

e + L2

h2
e

)
+

L

4πLc

{
4 tan−1

(
L

2he

)
− 2π

}]

≈ −Uh

2π

he

Lc

ln

(
1 +

L2

h2
e

)
, (4.20)

when the canopy is long, L � he, so that 4 tan−1 (L/2he) → 2π.
This result is from the linear solution, which requires L/Lc � 1. The deceleration

of the flow within the canopy leads to a perturbation mass flux outwards. When L
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is comparable to or greater than Lc, only in the adjustment region is there a mass
flux out of the canopy. Downwind, there is a slowly varying weak flow within the
canopy (if he � ls). Hence, an estimate for the deceleration upwind of the canopy for
more typical canopies that have L � Lc that accounts for this nonlinear process (but
ignores others) is obtained by replacing L with Lc in (4.20) to yield

u(−L/2, z0) = −Uh

2π

he

Lc

ln

(
1 +

L2
c

h2
e

)
. (4.21)

Later this expression will be compared to measurements.

4.2.3. Effects of canopy elements of finite volume in the impact region

The analysis developed above shows how the aerodynamic resistance of the
roughness elements within the canopy decelerates the flow over a distance of order
L upwind of the canopy and leads to a velocity perturbation (4.21) just upwind of
the canopy. Now, when the canopy elements have a finite volume, the streamlines are
also displaced over and around the canopy elements. This displacement also leads to
a deceleration of the (spatially averaged) mean flow, U .

The magnitude of this deceleration can be estimated by calculating the inviscid
irrotational perturbations to a uniform upwind flow, of magnitude Uh, caused by a
set of obstacles mounted on a surface. The resulting potential flow induced by the
bodies is then averaged over a horizontal area (ge + be) × (ge + be) to estimate the
deceleration of the mean flow induced by an canopy of elements of finite volume.

If the canopy elements are either cuboidal, so that be ∼ we ∼ he, or tall thin cylinders
mounted vertically, so that be � he and the flow is predominantly around the obstacles,
then the perturbation velocity near the surface a distance (ge + be) upwind of the
canopy is of order

u

Uh

∼ − b2
e

(ge + be)2
, (4.22)

and the deceleration decays algebraically upwind of the canopy on the length scale
ge + be.

We shall see evidence in the comparisons with measurements described in § 5 of
these decelerations associated with the finite volumes of the canopy elements.

4.3. Effects of the turbulent stress gradients

As the profiles in figure 4 show, the inviscid solution is incorrect both at the surface,
because it does not satisfy the no-slip condition, and at the top of the canopy, where
discontinuity in the force distribution yields large vertical gradients in the streamwise
velocity perturbations. Within thin layers, referred to here as inner layers, centred at
these two levels, the turbulent shear stress gradient become comparable to the inertial
terms, and a new analysis is required.

Following analyses of flow over hills (Jackson & Hunt 1975; Belcher & Hunt 1998;
Hunt, Leibovich & Richards 1988) and flow over roughness changes (Belcher et al.
1990), the stress gradient and advection terms, namely the first and sixth terms in
(4.9), are comparable in the inner layers, which on using the linearized version of the
mixing-length model (4.3) yields

− d2

dz2

(
2κu∗z

ik

d2w̃

dz2

)
∼ U0(z)

d2w̃

dz2
. (4.23)
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If the inner layer is centred at height hi , (4.23) yields an estimate for the thickness, li ,
of the inner layer, namely

k2l2i ∼ khi

u∗

U0(hi)
. (4.24)

The inner layer at the ground within the canopy, where the wind velocity decreases to
zero to satisfy the no-slip condition, then has hi = li , so that kli ∼ u∗/U0(li), which is
small. The inner layer at the top of the canopy has hi = he, so that k2l2i ∼ kheu∗/Uh,
which is also small. Hence, the inner layers are thin. This means first that, within
the inner layers, streamwise gradients, ∂/∂x, can be neglected compared with vertical
gradients, ∂/∂z. Secondly, the shear in the incident wind profile is small in the thin
inner layers and so the value of the incident wind profile can be approximated by its
value at the layer height, i.e. U0(z) ≈ U0(hi). Thirdly, the curvature term in (4.9) is
smaller within the inner layer than the advection term because their ratio is small:

U ′′
0 w̃

U0d2w̃/dz2
∼ u∗

U0(hi)
� 1. (4.25)

Hence, to leading order, the flow in the inner layers is governed by

− d

dz

{
d

dz

(
2κu∗lm

ik

d2w̃

dz2

)
− U0(hi)

dw̃

dz

}
=

df̃

dz
. (4.26)

This equation can be integrated once with respect to z. The integration constant is
ikp̃(hi), the perturbation pressure, which is approximately constant with height over
the thin inner layer. On using continuity, dw̃/dz = −ikũ, the leading-order equation
governing dynamics of inner layers, becomes

d

dz

(
2κu∗lm

dũ

dz

)
− ikU0(hi)ũ = f̃ + ikp̃(hi). (4.27)

Hence, any imbalance between streamwise advection, canopy drag and the pressure
perturbation driven by the inertial forces is balanced by vertical transport of
momentum by the stress gradient. The solution to (4.27) depends on the model
used for the mixing length. Explicit solutions for the standard mixing length and the
displaced mixing length are developed next.

4.3.1. Solution with the standard mixing-length model

As described above, for a uniform canopy of depth he there are inner layers around
the top of the canopy, z = he, and at the surface z = 0. Focus initially on the inner
layer at the surface.

The most general solution to (4.27) is found using Green’s function methods, and
with the standard mixing-length model, lm = κz, Jerram (1995, § § 3.5, 3.6) shows that

ũ = AJ0(Z) + BK0(−iZ) − p̃

U0(hi)

− 1

ikU0(hi)

∫ Z

Z0

Z′f̃ (k, z′) {J0(Z)K0(−iZ′) − J0(Z
′)K0(−iZ)} dZ′, (4.28)

where J0(Z) and K0(−iZ) are Bessel functions (Abramowitz & Stegun 1972, chapter 9).
The first, J0(Z), increases exponentially for large Z and the second, K0(−iZ), decays
exponentially for large Z. The Bessel functions are functions of a rescaled height
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variable defined by

Z = exp (3iπ/4)

(
U0(hi)

κu∗
kz

)1/2

. (4.29)

Note how f̃ in (4.28) remains a function of the unscaled height z.
The coefficients A and B in (4.28) are determined by the boundary conditions. Far

above the inner layer, the solution must remain finite, so that the coefficient of J0(Z)
must be zero at large Z, which yields

A − 1

ikU0(hi)

∫ ∞

Z0

Z′f (k, z′)K0(−iZ′) dZ′ = 0. (4.30)

Towards the surface, J0(Z) tends to zero, whereas K0(−iZ) diverges logarithmically.
The logarithmic divergence is avoided, and the no-slip condition is satisfied for the
inner layer at the surface, if B satisfies

AJ0(Z0) + BK0(−iZ0) − p̃(hi)

U0(hi)
= 0, (4.31)

where Z0 is the value of Z at z = z0.
The final condition required to determine the final coefficient in (4.10) and (4.28),

namely p̃(hi), is obtained by calculating the pressure in the inner layer, which is
determined from the solution for the pressure in the inviscid layer (4.12) taken in the
limit of small z. This procedure yields

p̃(hi) = iU0(hi)(C − D), (4.32)

where C is given by (4.14) and D is given by (4.13).
The inner layer around the top of the canopy has formally the same solution,

namely (4.28), but with di = he. Both inner layers are then neatly accounted for if
U0(hi) is replaced by U0(z) throughout the solutions to the inner layer obtained above.

Hence, all the coefficients are determined: (4.13) determines D, (4.14) determines
C, (4.30) determines A, (4.31) determines B , and (4.32) determines p̃(hi). The solution
with the standard mixing-length model is then complete. Jerram (1995, § 3.5.8) shows
that the small downstream thickening of the inner layer leads to a small vertical
velocity, so that when higher-order linear effects are calculated, C + D in (4.14) has
a very small contribution, of order u2

∗/U 2
h .

4.3.2. Solution with the displaced mixing-length model

With the displaced mixing-length model, in the flow through the bulk of the
canopy, z < zc, the mixing length is constant and so, in the linearized framework, the
perturbation flow is governed by a constant viscosity, namely νt = 2κu∗lm. Solutions
for the perturbations to the flow within the canopy can then be calculated from (4.2)
with no further approximation.

Hence, following Jerram (1995, § 3.8.5), the solution to (4.2) in z < zc is calculated
using Green’s function methods, and is found to be

w̃ = E[sinh{α(z − z0)} − (α/β) sinh{β(z − z0)}]
+ F [cosh{α(z − z0)} − cosh{β(z − z0)}]

− ik

2κu∗lm

∫ z

z0

∂f

∂z
(k, z′)

[
sinh{α(z − z′)}

α(α2 − β2)
− sinh{β(z − z′)}

β(α2 − β2)

]
dz′. (4.33)
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Here α2 = k2 + ikUh/νt and β = |k|, and E and F are coefficients that are determined
by boundary conditions. The streamwise velocity perturbation is obtained from
continuity and the pressure perturbation from the streamwise momentum equation,
thus

ũ = − 1

ik

∂w̃

∂z
, (4.34)

p̃ = −2κu∗lm

k2

(
∂3

∂z3
− k2 ∂

∂z

)
w̃ +

Uh

ik

∂w̃

∂z
+

f̃

ik
, (4.35)

τ̃ = −2κu∗lm

ik

(
∂2

∂z2
− k2

)
w̃. (4.36)

Above zc, the mixing length increases with height, lm = κ(z − d), where d is the
displacement height. Hence, the solution here has inner-layer dynamics, and so the
approximate solution is formally the same as (4.28), but with the height z replaced
by the displaced height z − d . Hence, the solution is (4.28) with

Z = exp (3iπ/4)

(
U0(hi)

κu∗
k(z − d)

)1/2

. (4.37)

The two coefficients, A and B , in this solution are determined by matching with the
inviscid layer that applies above the inner layer at the top of the canopy, and proceeds
exactly as in § 4.3.1. The inviscid component of the solution is also written in terms
of z − d , namely

w̃ = Ce−k(z−d) + Dek(z−d) +

∫ z−d

z0

f̃ (k, z′)
cosh (z − z′)

U0(z′)
dz′. (4.38)

The inner-layer solution must also match with the solution in the canopy mixing
layer, where the velocity perturbations are ũc and w̃c. Hence, the solutions above
the canopy mixing layer are the same as with the standard mixing-length model but
with an effective origin at the displacement height z = d , and with additional velocity
perturbations ũc and w̃c. The remaining constants E and F , which can be related to
ũc and w̃c, are found by ensuring that p̃ and τ̃ are continuous at the top of the layer
of constant mixing length. In the solutions calculated here, these coefficients were
calculated numerically: the procedure is straightforward but lengthy, for details, see
Jerram (1995, § 3.8.7).

4.4. Numerical implementation

The solutions derived above are for the Fourier transforms of the perturbations to
the flow induced by a weak force distribution, with Fourier transform f̃ (k, z). The
procedure for obtaining solutions for a realistic force distribution that varies in the
streamwise direction, f (x, z) is as follows. The Fourier transform is taken numerically
of the force distribution, f (x, z), to yield f̃ (k, z). The solutions obtained above, which
depend upon f̃ (k, z), are then evaluated numerically for each k. These solutions
for the Fourier transforms of the perturbation flow, e.g. ũ(k, z), are then inverted
numerically using a fast Fourier transform to obtain the perturbations in physical
space according to (4.8).

In fact, the solutions contain a logarithmic singularity at zero wavenumber. This
singularity must be treated correctly because most force distributions of interest
have non-zero power at k = 0, and hence this part of the inverse Fourier transforms
contributes to the solutions. (The force distribution has zero power at k = 0 only if the
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Figure 5. The effect of iterating the force. (a) The ratio of the force after iteration to
before iteration, integrated over the height of the canopy. (b, c) Streamwise velocity at half
the canopy height, before and after iteration, normalised on undisturbed wind speed at
half the canopy height. The horizontal axis is streamwise distance from leading edge normalised
on the canopy height. The position of the canopy is shown as hatched.

force distribution is such that
∫ ∞

−∞ f (x, z) dx = 0, which is not typical.) The singularity
is treated by integrating the small-wavenumber range separately by changing the
integration variable to ln k. See Jerram (1995, § 4.3) for details.

Finally, as explained in § 2.1, the force distribution is written for practical
applications as f = U 2/Lc. In a strictly linear analysis, the forcing then becomes
f = U 2

0 /Lc with U0(z) the upstream undisturbed velocity profile. With this strictly
linear model, the flow can never adjust to a balance between the stress gradient and
the canopy drag, because the canopy drag does not adjust. Hence, such a strictly
linear model can only describe the adjustment region described in § 3.

The strictly linear model can be improved upon significantly by accounting for the
nonlinear drag, yielding a quasi-linear model. The procedure is to iterate numerically
the linearized solutions obtained analytically as follows. On the first iteration, f

is specified using the undisturbed velocity profile U0(z). The streamwise velocity
perturbations are then calculated. A new force distribution is then constructed using
the computed streamwise velocity U0 + u. This force distribution is then used in
the analytical solutions to compute the next iteration for the streamwise velocity
perturbation. The process is repeated until the solution changes by less than a
specified tolerance. In the examples considered below, the solutions converged in
three or four iterations.

The effect of the nonlinear correction renders the model a useful predictive tool,
as shown below. Figure 5 shows results from a simulation with a rectangular region
of drag (using the parameters of the experiment of Davidson et al. 1995a, which are
described below). It shows the ratio of the drag f calculated with and without iteration
and the streamwise velocity at half the canopy height with and without iteration. This
figure demonstrates the importance of the iteration: without iteration the streamwise
velocity perturbation continues to decrease through the canopy, whereas with iteration,
it comes more nearly into equilibrium.
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5. Comparison of model results with previous studies
The objective of the present study has been to elucidate scalings for adjustment to

a canopy and also to develop a quantitative model. Therefore, any parameters of the
model are estimated on the basis of physical arguments, the flow that result from the
estimated parameter set is then calculated, and the results compared with simulations
or experiment.

Each of the comparisons below shows a different aspect of the fluid dynamics: § 5.1
shows how the quasilinear model compares with a numerical model with all nonlinear
terms; § 5.2 shows adjustment to a fine-scale (forest) canopy; § 5.3 shows recovery and
then impact in a fine-scale canopy; and § 5.4 shows adjustment to a canopy of large
roughness elements, when we suggest the finite-volume process becomes important.

5.1. Comparison with the numerical model of Svensson & Häggkvist

Svensson & Häggkvist (1990) performed a numerical simulation of two-dimensional
mean flow through a distributed resistance in a rectangular region with he = 2.5m
and L = 250 m. The distributed resistance was calculated from f = c̄da|U |U/2, with
a drag coefficient c̄d = 0.3, and a ‘plant area density’, a = 2.1m−1, which yields
Lc = (c̄da/2)−1 = 3.2 m, so that he/Lc = 0.8. This is a shallow canopy.

The turbulent stress was modelled by Svensson & Häggkvist using a modified
form of the k −ε closure model. Small-scale wake turbulence generated by the canopy
increases small-scale dissipation (Kaimal & Finnigan 1995, chapter 3), which Svensson
& Häggkvist represent by introducing new source terms based on c̄d , a and U into
the equations for turbulent kinetic energy and turbulent dissipation. Svensson &
Häggkvist adjusted the coefficients multiplying these new source terms to give good
agreement with canopy velocity profiles measured in the experiment of Raupach et al.
(1986) far downstream of the adjustment region.

The incident velocity profile used by Svensson & Häggkvist was

U (z) = 10

(
z

110 m

)1/7

m s−1. (5.1)

For comparison with the present model, a logarithmic profile was fitted to (5.1)
by matching velocities at z = he and z = he/2. This gives z0 = 1.604 mm and u∗ =
0.3248 m s−1. The fitted logarithmic profile then differs from (5.1) by less than 3%
over the height range 0.4 m < z < 11 m, which includes the part of the canopy where
the distributed force and velocity perturbations are most significant.

The present model, with the simple mixing length, was used to compute the flow
through a rectangular canopy. Results in the exit region of the canopy calculated
from the present model are compared with Svensson & Häggkvist’s results in figure 6.
The points are simulation data measured from Svensson & Häggkvist’s figure 4a. The
curves are from the present model. The agreement is satisfactory, giving confidence
that the quasi-linear model developed here is useful in representing the nonlinear
adjustment computed by Svensson & Häggkvist’s fully-nonlinear model.

5.2. Flow through a model plant canopy

Meroney (1968) measured the turbulent flow in and above a model forest consisting
of trees made from ‘plastic simulated-evergreen boughs’. His forest canopy was 0.18 m
high and 11 m long with tree density one per 36 cm2. Meroney gives the tree drag
coefficient as c̄d = 0.72 and his description of the model tree shape gives a frontal
area of 71.5 cm2. Hence, the projected frontal area of the tree crown is af = 11.0 m−1.
The leaf area index a may be greater or less than af depending upon leaf distribution
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Figure 6. Profiles of streamwise velocity in the exit region of a canopy, whose position is
shown as hatched. Points: numerical simulation of Svensson & Häggkvist (1990). Curves:
current theory with the simple mixing-length model.

and orientation within the crown. The occupied volume fraction β is half the volume
porosity of the tree crown. In the absence of more precise information, we estimate
a/(1 − β) = af . With this data, and assuming that the drag is uniformly distributed
with height, the canopy-drag length scale is estimated from (2.4) to be Lc = 0.13 m.
Hence, he/Lc = 1.4 and this is a deep canopy, typical of forests. Jerram (1995, § 4.7)
also shows calculations with a higher drag in the tree crown than in the trunk space.
The results are almost indistinguishable from the results with the uniform drag and
are not further discussed here.

Meroney did not specify an incident velocity profile. It is estimated here by fitting
a logarithmic profile to his measured profile at x = −1 m. This gives z0 = 1.77 mm
and u∗ = 0.391 m s−1. The present model was also used to compute the flow using
the displaced mixing-length model. The parameters for the displaced mixing-length
model are estimated to be lc/he = 0.2, d/he = 0.7 and zc/h = 0.75. The low value
of lc/he reflects the small horizontal length scale of the model forest elements (which
were less than about 5 cm) in comparison with canopy height. The value of d/he is an
estimate following Thom (1971) and Jackson (1981) of the level of mean momentum
absorption, and is typical of the ratios observed. These values of zc and d imply that
the effective roughness length of the canopy is z

eff
0 = 0.05he ≈ 1 cm.

The comparison between present theory and experiment is shown in figure 7 (simple
mixing-length model) and figure 8 (displaced mixing-length model). In general, the
agreement is good, and more so for the downstream half of the canopy than for the
upstream half. Note also that the deceleration of the flow ahead of the canopy obtained
from (4.21) is u/U0 = −0.24, which is about a quarter of the maximum velocity deficit
in the canopy, in agreement with the computations and the measurements.

The results for the overall form of the flow obtained from the simple and
displaced mixing-length model calculations are similar. In particular, the growth of the
maximum velocity defect is similar in both cases. This similarity occurs because the
maximum velocity deficit is controlled largely by the inviscid dynamics, as explained
in § 3.
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Figure 7. Profiles of perturbations to the streamwise velocity through Meroney’s (1968) wind
tunnel model of a forest canopy. Points: values measured by Meroney (1968). Solid lines:
current theory using the simple mixing-length model. Dotted line: boundary of the canopy;
dot-dash line: sketch of the development of the internal boundary layer that develops over the
canopy interior.
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Figure 8. Comparison of Meroney’s (1968) wind tunnel model of a forest canopy with
the present model using the displaced mixing-length model with lc/he = 0.2, d/he = 0.7
and zc/he = 0.75. Perturbation streamwise velocity is plotted against height at a series of
downstream locations. Points: experimental data. Solid lines: current theory.

5.3. The effect of a clearing in mid-forest

Next the model is applied to a mean wind acceleration in a clearing in mid-forest
investigated by Stacey et al. (1994) using model trees in a wind-tunnel experiment.
Stacey et al. modelled a spruce forest with average height he = 15 m, with far
upstream roughness height 0.1 m, across which a clearing had been cut 6.7 tree
heights (100.5 m) wide. They assumed that the full-scale drag of an isolated tree D (in
Newtons) agreed with an empirical formula due to Mayhead, Gardiner & Durrant
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Figure 9. Velocity vectors in a clearing in mid-forest. Coordinates are non-dimensionalized
on the forest canopy height h = 15 m. Grey scale within the canopy indicates the strength of
the local force on the canopy: the largest force acts at the leading edge of the canopy following
the clearing.

(1975), namely,

D = 0.4352U 2m0.667 exp(−0.0009779U 2), (5.2)

where m is the tree’s live branch mass in kg and U is the nominal incident wind speed
in m s−1. In the conditions being modelled, the live branch mass was m = 49.5 kg
and the nominal wind speed 30 m s−1, hence the drag force on an isolated full-scale
tree was 2193 N. The lateral and streamwise tree spacings were 1.73 m, so the canopy
volume per tree was 44.9 m3. Therefore, the canopy adjustment length scale may be
estimated as

1

Lc

=
2193 N

1
2
ρ × 302 m2 s−2 × 44.9 m3

≈ 0.11 m−1, (5.3)

so that Lc = 9 m and this is again a deep canopy with he/Lc = 1.7.
The flow field shown in figure 9 is calculated using two regions of distributed force.

Both are 15m high and have Lc = 9m. One extends from x = −500 m to x = 0 and
is intended to set up an equilibrium canopy flow. The other extends from x = 100.5 m
to x = 300 m. The clearing lies between the two regions. The experimentally measured
flow field is shown in Stacey et al.’s (1994) figure 13. Detailed numerical comparison
is not attempted here; there is qualitative agreement between the experimental data
presented in Stacey et al. and the present model. The most notable feature is the
vertical velocity variation within the clearing. The wind turns downwards to fill out
the clearing immediately after its upstream edge and only turns upwards again after
the trailing edge when the blocking effect of the downstream resistance has become
dominant.

The shaded contours over the canopy regions in figure 9 represent the strength
of the local distributed force. The darker contours at the downstream edge of the
clearing indicate that the force acting is stronger here than in the equilibrium flow
at the left-hand edge of the figure. Hence, a clearing in a forest increases the risk of
local wind damage, as observed by Stacey et al.

5.4. Deceleration of the mean wind through a building canopy

Davidson et al. (1995a, b) conducted two experiments on a staggered array of
obstacles, arranged as shown in figure 10, more typical of an urban canopy with
he/Lc < 1. One was a full-scale field experiment with obstacle dimensions (refer to
figure 10) we × be × he = 2.2 m × 2.45 m × 2.3 m, with L = 44.1 m, the other a wind-
tunnel experiment with we = be = he = 0.12 m, with L = 1.92 m. Davidson et al.
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Figure 10. The obstacle layout in Davidson et al.’s (1995a) experiments.

Height, he Length, L Lc(c̄d = 3) Lc(c̄d = 5)
(m) (m) (m) (m)

Field 2.3 44.1 14.8 8.9
Wind tunnel 0.12 1.92 0.72 0.43

Table 1. Parameters for the model calculations of the experiments of Davidson et al.

measured mean streamwise velocities at half the height of the buildings. For each
fetch, the streamwise velocity was measured at a range of lateral positions. Davidson
et al. then averaged these measurements to yield an estimate of the spatially averaged
mean streamwise velocity, which are now compared with the values computed by the
model. This procedure was repeated at a range of fetches to quantify the deceleration
caused by the array. Assuming that lateral velocity gradients near the array centreline
are negligible, so that the centreline flow can be described by the two-dimensional
model, the measured velocities can be compared with predictions using the present
distributed force model.

In both experiments the incident velocity profile was logarithmic, with roughness
parameters z0 = 11 mm, u∗ = 0.49 m s−1 (field) and z0 = 0.4 mm, u∗ = 0.21 m s−1

(wind tunnel). The roughness density, λ = NeAf /At , for the experiments is λ =
(we × he)/(3be × 3we) = 0.1, for both the field and wind-tunnel experiments. The
fraction of volume occupied by fluid is 1 − β = 0.89. Drag coefficients for the
individual obstacles were not measured. Our calculations use two assumed values
for the sectional drag coefficient: c̄d = 3 and c̄d = 5; this enables us to assess
the dependence of wind deceleration on c̄d as well as to see whether our range of
predictions includes the experimental data. Values of the sectional drag coefficient, c̄d ,
are higher than values of the bulk drag coefficient, which is referenced to a velocity
at the cube height. Nevertheless the values used here for c̄d are higher than expected.
We return to this question later. These parameters yield, on using (2.4) and λ = 0.1,
the values of Lc shown in table 1. Thus, the obstacle canopies of the two experiments
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Figure 11. Deceleration of the mean wind (U0 + u)/U0 at z = he/2 through an obstacle
canopy. Points: measurements of Davidson et al. (1995a, b). Solid lines: present theory with
parameters for the field experiment. Dashed lines: present theory with parameters for the
wind tunnel experiment. For each experimental configuration the theory is computed using
the simple mixing length theory and for c̄d = 3 and 5.

are modelled by rectangular drag distributions with height, length and values of Lc

given in table 1. Notice that in all cases he/Lc � 1 and Lc/L � 1, typical of urban
areas.

The comparison is shown in figure 11. Note that, as shown by Davidson et al.,
data from the two experiments collapse onto each other when non-dimensionalized
as in figure 11. This is because the model and full scale roughness heights are in
approximately the same ratio as the obstacle dimensions (as measured by the
roughness density, λ). There is good agreement between theory and experiment in the
overall form of the deceleration curve. In particular, the model correctly captures
the magnitude of the significant reduction in wind speed through the canopy. Notice
how the maximum velocity deficit is related nonlinearly to the drag coefficient c̄d .

Note the marked difference in the velocity reduction at the leading edge of the
canopy in figure 11 compared to the plant canopies considered before. In the model
computations, (Uhe/2 + u(x = 0))/Uhe/2 ≈ 0.9, in agreement with (4.21). However, this
does not agree with the measurements, which show a larger drop upwind at x = 0.
The reason is that in this experiment the blocking effect by the large canopy elements
is significant. At a distance x = −(ge + be) ≈ −3be, the deceleration from this blocking
estimated from (4.22) is

Uhe/2 + u

Uhe/2

∼ 1 − b2
e

(ge + be)2
≈ 0.9 at

x

be

≈ −3, (5.4)

which is in remarkably good agreement with the measured value. This blocking
mechanism acts additively to the drag mechanism. Hence, it seems likely that a
quantitative model with both mechanisms represented would yield good agreement
with the data with a smaller, and more plausible, value of c̄d .

Notice also that the velocity deficit recovers more quickly downwind than in the
linear distributed force model because of the neglect of the nonlinear inertial forces.
The quasi-linear model is clearly able to capture well the deceleration in the canopy.
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This comparison therefore shows, for the first time, that a canopy approach can be
used to model quantitatively the spatially averaged flow in a group of large obstacles.

6. Variation of the effective roughness of the canopy
The flow above the canopy can be modelled by representing the canopy as a

roughness, with effective roughness length, z
eff
0 , and effective displacement height,

deff (although this approach does not resolve the detailed dynamics of the canopy
described by the present model). As we shall now see, these effective parameters vary
with fetch through the adjustment region.

When the internal boundary layer above the canopy has grown sufficiently, the
mean velocity just above the canopy takes the form

U (x, z) =
u

eff
∗ (x)

κ
ln

(
z − deff(x)

z
eff
0 (x)

)
. (6.1)

The effective parameters that govern the canopy can be deduced from the linear
analytical model described above as follows. First, the linear perturbation to the wind
profile caused by the canopy, u, becomes, on neglecting products of perturbations,

u(x, z) = U (x, z) − U0(z) =
(ueff

∗ − u∗)

κ
ln(z/z0) − u∗

κ
Meff − u∗

κz
deff. (6.2)

Here, Meff = ln(zeff
0 /z0) and u∗ is the friction velocity in the incident flow. Sufficiently

far along the canopy, x � Lc, Meff = Meff
∞ . The difference between Meff and Meff

∞ is
caused by the changing flow in the adjustment region of figure 3.

The three terms on the right-hand side of (6.2) describe perturbations to the friction
velocity, roughness length and displacement height. The effective parameters can then
be obtained by first calculating the Fourier transform of (6.2), which yields

ũ(k, z) =
τ̃ (k)

2κu∗
ln{(z − d)/z0} − u∗

κ
M̃eff − u∗

κz
d̃eff, (6.3)

and then by comparing with the linear solution calculated in § 4 (see Jerram 1995,
§ 5.2 for details). When the displaced mixing-length model is used, this procedure
leads to

Meff(x) =
1

2u2
∗

∫ ∞

zc

f (x, z′) ln

(
z′ − d

z0

)
dz′ − uc

u∗
, (6.4)

deff(x) = d. (6.5)

Thus, the varying effective roughness length Meff(x) has two components: first, a step
change associated with the step change in the canopy drag; and secondly a positive,
and comparable, contribution associated with the variation in the slip velocity, uc(x), at
the height zc within the canopy where the mixing-length changes from being constant
with height to varying linearly with height. Meff(x) rises to its equilibrium value over
a distance of order Lc. In classical roughness change experiments (e.g. Bradley 1968),
this length corresponds to a few, perhaps, 4 or 5, obstacle heights. The effective
displacement height remains the origin of the mixing length above the canopy, i.e. d

for the displaced mixing-length model.
The results for the effective parameters for the standard mixing-length model are

obtained by setting zc = z0, d = 0 and uc = 0. The effective roughness length with
the standard mixing-length model is larger than with the displaced mixing-length
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Figure 12. Variation of the effective roughness length parameter Meff(x) = ln(z
eff
0 /z0) with

fetch. Dot-dashed line: present theory with the simple mixing-length model. Solid line: present
theory with the displaced mixing-length model. The parameters are as for the simulations of
Meroney’s (1968) experiment and the position of the canopy is denoted by the hatched area.

model (since explicit computations show that uc is positive). The displacement height
remains zero when the standard mixing-length is used.

The variation of Meff(x) with fetch for the parameters used in § 5.2 for Meroney’s
laboratory experiments is shown in figure 12. With the displaced mixing-length model,
an equilibrium value of Meff of about 2.7, which corresponds to an effective roughness
length of 2.6 cm, is reached after a fetch of about 1 m. This value can be compared
with a value obtained from the wind profile over the same model canopy measured by
Hsi & Nath (1970). When their measurements are replotted, the displacement height
can be inferred, following Thom (1971) and Jackson (1981), from the level of mean
momentum absorption, and is found to be d = 12.6 cm. A good fit to the measured
wind profile is then obtained with an effective roughness length of 1.6 cm, which is in
reasonable agreement with the value 2.6 cm calculated here. The effective roughness
length depends only weakly on the values of the other parameters in the displaced
mixing-length model.

The value of the effective roughness length obtained from the model with the
standard mixing-length model, however, is very much larger – too large to be credible.
This error occurs because the standard mixing-length model yields a zero displacement
height.

For the Meroney experiment, the effective roughness length reaches its equilibrium
value approximately 1 m into the canopy. This distance corresponds to about 7Lc.
For shorter fetches, the effective roughness length makes a transition from its small
value upstream. Downstream of the canopy, the effective roughness length adjusts to
its upstream value, but more slowly than the adjustment within the canopy.

This method provides a systematic way of estimating the effective roughness length
over a canopy in terms of its drag distribution f (x, z) and may improve current
approximate methods. The results within the adjustment region differ from the
estimates for z

eff
0 derived by Thom (1971) and Jackson (1981) because they did

not consider the loss of momentum in the boundary layer produced by the efflux out
of the top of the canopy.
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The variation in this adjustment region should be incorporated into numerical
weather prediction models which currently assume (e.g. Wood & Mason 1993; Goode
& Belcher 1999) (i) that the surface drag is parameterized by z0 defined on an
appropriate computational mesh, (ii) that the near surface flow adjusts immediately
to any changes in roughness and (iii) that the flow passes over the top of the canopy.
The second assumption partly compensates for the third. However, these approximate
methods do not account for the high drag in the adjustment region.

7. Conclusions
A general approach has been developed for understanding how deep turbulent

boundary layers adjust as they flow over and through a canopy of roughness elements.
Following work on plant canopies, mean momentum equations are obtained by
averaging both temporally and spatially. These mean flow equations contain two new
terms: (i) the drag that arises from averaging spatially the form drag due to individual
canopy elements; and (ii) a finite-volume effect whereby momentum is transported
by displacement of streamlines around individual canopy elements. The present study
has focused on the case when the fraction of volume occupied by the roughness
elements, β , is small. Over the bulk of the flow, the drag of the canopy elements is
the dominant process. In the impact region, just upstream of the canopy, however,
the finite volume effect is large when the canopy elements are large.

Scaling arguments have identified three stages of the adjustment. First, the drag
and the finite volumes of the canopy elements decelerate air parcels; the associated
pressure gradient decelerates the flow within an impact region upwind of the canopy.
Secondly, within an adjustment region of length of order Lc downwind of the leading
edge of the canopy, the flow within the canopy decelerates substantially until it comes
into a local balance between downward transport of momentum by turbulent stresses
and removal of momentum by the drag of the canopy elements. The adjustment
length, Lc, is proportional to (i) the reciprocal of the roughness density (defined to be
the frontal area of canopy elements per unit floor area) and (ii) the drag coefficient of
individual canopy elements. Further downstream, within a roughness-change region,
the canopy is shown to affect the flow above as if it were a change in roughness
length, leading to the development of an internal boundary layer.

A quantitative model for the adjustment of the flow is developed by calculating
analytically small perturbations to a logarithmic velocity profile induced by the drag
due to a sparse canopy with L/Lc � 1, where L is the length of the canopy. These
linearized solutions are then evaluated numerically with a nonlinear correction to
account for the drag varying with the velocity. A further correction is derived to
account for the finite volume of the canopy elements.

The results are shown to compare well with experimental measurements in a fine-
scale vegetation canopy, when the drag is more important than the finite-volume
effects, and a canopy of coarse-scale cuboids, when the finite-volume effects are of
comparable importance to the drag in the impact region.

An expression is derived showing how the effective roughness length of the canopy,
z

eff
0 , is related to the drag in the canopy. The value of z

eff
0 varies smoothly with fetch

through the adjustment region from the roughness length of the upstream surface to
the equilibrium roughness length of the canopy. Hence, the analysis shows how to
resolve the unphysical flow singularities obtained with previous models of flow over
sudden changes in surface roughness.

Finally, we note that the method of this paper can be applied to the changes in
scalar fields associated with large roughness changes, using the methods developed
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by Raupach (1992) and Hewer & Wood (1998) together with the concept of an
adjustment region developed here.

This paper was developed under the UWERN Urban Meteorology Programme (see
http://www.met.rdg.ac.uk/Research/urb met/). S. E. B. is grateful to the NERC for
funding under URGENT grant GST/02/2231. N. J. is grateful for support under a
PhD studentship funded by MoD Porton Down. J. C.R.H.’s research in the Centre
for Polar Observation and Modelling is supported by NERC.
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